Tero Karvinen, Kimmo Karvinen și Ville Valtokari

Să construim Senzori

Proiecte și experimente pentru a măsura lumea cu plăcile Arduino și Raspberry Pi

M.A.S.T., 2017

Cuprins

Prefață	11
1. Raspberry Pi	21
Raspberry Pi de la zero la prima bootare	. 22
Extrageți NOOBS*	23
Conectați cablurile	23
Bootați și instalați Raspbian	24
Depanarea instalării defectuoase a Raspberry Pi	26
Familiarizați-vă cu Linux	28
Interfața liniei de comandă este peste tot, întotdeauna	29
Priviți în jur	30
Fișiere de text pentru configurare	30
sudo Fă-mi un sandwich	31
Conectarea părții electronice la pinii Raspberry Pi	33
Bun venit, GPIO, clipește din LED	34
Construirea circuitului	36
Două sisteme de numerotare: scopul și locația	36
Controlul pinilor GPIO din CLI	38
Scrierea în fișiere fără editor	39
Aprinderea LED-ului	40
Depanarea	41
GPIO fără root	43
Depanarea GPIO	46
GPIO in Python	46
Hello Python	46
Ce urmează	50
Mind Andrew Market Contract of Minde	
2. Arduino	51
Modul de instalare primar al Arduino	52
Ubuntu Linux	52
Windows 7 si Windows 8	53

3

Anatomia unui program Arduino	56
Plăcile shield conferă simplitate și robustețe	57
3. Distanța	59
Experiment: Măsurați distanța cu sunetul ultrasonic (PING)	60
Codul Ping și conexiunile pentru Arduino	61
Codul Ping și conexiunile pentru Raspberry Pi	64
Senzorul ultrasonic HC-SR04	67
Codul HC-SR04 și conexiunea pentru Arduino	67
Codul HC-SR04 și conexiunile pentru Raspberry Pi	69
Explicarea calculării ecoului	71
Experiment de mediu: Obiecte invizibile	73
Experiment: Detectarea obstacolelor cu infraroșii(Senzorul de distanță IR)	74
Codul întrerupătorului cu infraroșii IR și conexiunile pentru Arduino	75
Codul întrerupătorului cu infraroșii IR și conexiunile pentru Raspberry I	Pi 77
Experiment de mediu: Cum să vedem infraroșiile	78
Experiment: Urmăriți mișcarea cu infraroșii (Ochiul compus IR)	80
Codul ochiului compus și conexiunea pentru Arduino	81
Codul ochiului compus și conexiunile pentru Raspberry Pi	84
Instalarea SpiDev	88
Circuite alternative pentru Raspberry Pi	89
Proiect-test: Alarma de poziție corporală (Arduino)	90
Ce veți învăța	91
Beeper-ul piezoelectric	91
Alarmă, alarmă!	93
Combinarea unui senzor piezoelectric cu unul IR	94
Ambalarea întregului ansamblu într-un pachet aspectuos	97
4. Fumul și gazele	100
Experiment: detectarea fumului (senzorul analogic de gaze)	101
Codul MQ-2 și conexiunea pentru Arduino	102
Codul MQ-2 și conexiunea pentru Raspberry Pi	104
Experiment de mediu: Fumul se duce în sus	106
Experiment: Alcoolmetrul (Senzorul de alcool MQ-303A)	107
Experiment de mediu: Încercați-l fără să beți	111
Proiect-test: transmiterea alarmei de fum prin email	112
Ce veți învăța	112
Python pentru email și mediile de socializare	112

Construcția	113
Cum funcționează e-mail-ul?	113
Poate Arduino să trimită emailuri? Mai greu.	114
Codul pentru Raspberry Pi	115
Ambalare	118
different obtiv versionaar protein Ardolde	
5. Comenzi "touch"	123
Experiment: butonul	123
Rezistența de ridicare	125
Codul și conexiunea pentru Arduino	125
Codul și conexiunea pentru Raspberry Pi	127
Experiment: Micro-întrerupătorul	129
Codul micro-întrerupătorului și conexiunea pentru Arduino	130
Codul micro-întrerupătorului și conexiunea pentru Raspberry Pi	132
Experiment: Potențiometrul (Rezistența variabilă, Pot)	134
Codul potențiometrului și conexiunea pentru Arduino	136
Codul potențiometrului și conexiunea pentru Raspberry Pi	137
Experiment: detectarea atingerii fără contact (senzorul de contact	
capacitiv QT113)	139
Codul QT113 și conexiunea pentru Arduino	140
Codul QT113 și conexiunea pentru Raspberry Pi	142
Experiment de mediu: Detectarea atingerii prin lemn	143
Experiment: Detectarea presiunii (FlexiForce)	145
Codul FlexiForce și conexiunea pentru Arduino	145
Codul FlexiForce și conexiunea pentru Raspberry Pi	147
Experiment: Construiți singur un senzor de contact	149
Codul senzorului capacitiv și conexiunea pentru Raspberry Pi	150
Proiect de testare: Soneria magică	152
Ce veți învăța	153
Servomotoarele	153
Codul soneriei magice și conexiunea pentru Arduino	159
Atașarea servomotorului la sonerie	161
all the second	
6. Mișcarea	163
Experiment: Cum se ajunge sus? (senzorul cu bilă)	163
Codul senzorului de înclinație și conexiunea pentru Arduino	164
Codul senzorului de înclinație și conexiunea pentru Raspberry Pi	165

Experiment: Vibrații pozitive cu Interrupt (întrerupere de program)	
(senzorul digital de vibrații)	166
Codul senzorului de vibrații și conexiunea pentru Arduino	167
Codul senzorului de vibrații și conexiunea pentru Raspberry Pi	169
Experiment: Rotiți butonul	171
Codificatorul rotativ și conexiunea pentru Arduino	172
Codul codificatorului rotativ și conexiunea pentru Raspberry Pi	174
Experiment: Joystickul analogic (Joystick analogic cu două axe)	176
Codul joystick-ului și conexiunea pentru Arduino	172
Codul joystick-ului și conexiunea pentru Raspberry Pi	179
Experiment de mediu: părți recuperate dintr-un controler pentru	
consola Xbox	181
Experiment: Alarma antifurt! (Senzorul pasiv cu infrarosii)	182
Codul alarmei antifurt și conexiunea pentru Arduino	183
Codul alarmei antifurt și conexiunea pentru Raspberry Pi	185
Experiment de mediu: Înselarea alarmei	187
Proiect de testare: Pong	190
Ce veți învăta	192
Idei de ambalare pentru Pong	196
Pornirea automată a jocului când Raspberry Pi bootează	200
Rulați jocul pe Login (logare)	200
Logarea automată	201
intersit de mediar Detectarea alitiçarit prin temp. 163	
7. Lumina	204
Experiment: Detectarea flăcării (Senzorul de flacără)	204
Codul senzorului de flacără și conexiunea pentru Arduino	205
Codul senzorului de flacără și conexiunea pentru Raspberry Pi	207
Experiment de mediu: Precizia flăcării	209
Experiment: Vedeți lumina (Fotorezistorul, LDR)	210
Codul LDR și conexiunea pentru Arduino	210
Codul LDR și conexiunea pentru Raspberry Pi	212
Experiment de mediu: O directie	214
Experiment: Urmăriți linia	215
Codul senzorului de linie si conexiunea pentru Arduino	216
Codul senzorului de linie și conexiunea pentru Raspberry Pi	218
Experiment de mediu: Negrul este alb	219
Experiment: Toate culorile curcubeului	221
Codul senzorului de culoare și conexiunea pentru Arduino	222

Codul senzorului de culoare și conexiunea pentru Raspberry Pi	225
Proiect-test: Domul cameleonic	228
Ce veți învăța	228
LED-ul RGB.	229
Trecerea gradată de la input la output (easing)	235
Combinarea codurilor	236
Idei utile la construirea Domului	242
8. Accelerația	246
Accelerație vs. viteză unghiulară	246
Experiment: Accelerați cu MX2125	247
Decodarea lungimii impulsului la MX2125	248
Codul accelerometrului și conexiunea pentru Arduino	251
Codul accelerometrului și conexiunea pentru Raspberry Pi	252
Experiment: Accelerometru și giroscop împreună	254
Codul MPU 6050 și conexiunea pentru Arduino	256
Codul MPU 6050 și conexiunea pentru Raspberry Pi	263
Sistemul de calcul hexazecimal, binar și alte sisteme de calcul	268
Operații cu biți	271
Experiment: Adaptarea unui Wii Nunchuk (cu I2C)	276
Codul Nunchuk și conexiunea pentru Arduino	277
Codul Nunchuk și conexiunea pentru Raspberry Pi	281
Proiect-test: mână de robot controlată de Wii Nunchuk	283
Ce veți învăța	284
Adăugarea mecanicii mâinii	288
9. Identitatea	291
Tastatura	292
Codul tastaturii și conectarea la Arduino	293
Codul tastaturii și conexiunea pentru Raspberry Pi	296
Experiment de mediu: Dezvăluirea amprentelor	299
Scannerul de amprente GT-511C3	300
Codul senzorului de amprente și conexiunea pentru Arduino Mega	302
Codul senzorului de amprente și conexiunea la Raspberry Pi	309
RFID cu elementul constructiv electronic ELB149C5M	314
Codul RFID și conexiunea pentru Arduino Mega	316
Codul RIFD și conexiunea pentru Raspberry Pi	319
Proiect-test: Cufăr vechi din viitor	322

Ce veți învăța	322
Modul de funcționare a cufărului	322
Cufărul	323
Codul cufărului vechi și conexiunea pentru Arduino	325
Cine sau ce este?	331
10. Electricitatea și magnetismul	332
Experiment: Tensiunea și curentul	332
Codul AttoPilot și conexiunea pentru Arduino	334
Codul AttoPilot și conexiunea pentru Raspberry Pi	336
Experiment: Este magnetic?	338
Codul senzorului cu efect Hall și conexiunea pentru Arduino	339
Codul senzorului cu efectul Hall și conexiunea pentru Raspberry Pi	340
Experiment: Nordul magnetic cu busola-accelerometru LSM303	342
Calibrați modulul	343
Codul LSM303 și conexiunea pentru Arduino	344
Codul LSM și conexiunea pentru Raspberry Pi	350
Protocolul LSM303	355
Calculul heading-ului (cap-compasului) busolei	355
Experiment: Întrerupătorul Hall	358
Codul întrerupătorului Hall și conexiunea pentru Arduino	358
Întrerupătorul Hall și conexiunea pentru Raspberry Pi	360
Proiect test: Monitor pentru celulă solară	361
Ce veți învăța	362
Conectarea celulelor solare	362
Transformarea plăcii Raspberry Pi într-un server de Internet	363
Găsirea adresei IP	365
Realizarea propriei pagini de start pe Raspberry Pi	365
Codul monitorului panoului solar și conexiunea pentru Raspberry Pi	366
Sarcini cronometrate cu Cron	369
Ce urmează?	370
11. Sunetul	371
Experiment: Auzim voci/nivelul volumului	371
Codul de prototipare al microfonului și conexiunea pentru Arduino	372
Codul de prototipare al microfonului și conexiunea pentru Raspberry Pi	373
Experiment: Auziți căderea unui ac?	374
Proiect test: Vizualizați sunetul prin HDMI	375

Ce veți învăța	376
Activarea portului serial în Raspberry Pi	376
Codul vizualizatorului și conexiunea pentru Raspberry Pi	377
Transformarea rapidă Fourier	380
Ce urmează?	382
12. Vremea și clima	383
Experiment: Este cald în cameră?	383
Codul LM35 si conexiunea pentru Arduino	384
Codul LM35 și conexiunea pentru Raspherry Pi	385
Experiment de mediu: Schimbarea temperaturii	387
Experiment: Aerul este umed aici?	388
Cât de umedă este respirația dumneavoastră?	389
Codul DHT11 si conexiunea pentru Arduino	389
Codul DHT11 si conexiunea pentru Raspberry Pi	392
Vorbind cu Arduino de pe Raspberry Pi	394
GY65 pentru presiunea atmosferică	396
Codul GY65 si conexiunea pentru Arduino	397
Folosirea bibliotecilor Arduino	399
Explicarea bibliotecii Arduino GY65	399
Codul GY65 și conexiunea pentru Raspberry Pi	405
Experiment: Planta dumneavoastră trebuie udată? (Construiți un senzor	r
de umiditate a solului)	408
Codul senzorului de umiditate a solului și conexiunea pentru Arduino	409
Codul senzorului de umiditate a solului și conexiunea pentru	
Raspberry Pi	410
Proiect test: Prognoza meteo cu hârtie electronică	412
Ce veți învăța	413
Codul prognozei meteo și conexiunea pentru Arduino	413
Experiment de mediu: Uite, mamă, nu-i nimic în priză!	422
Stocarea imaginilor în fișierele de preambul	422
Programul de conversie BMP la C	424
Idei de ambalare	426
Apendix A. Scurtă referire la Raspberry Pi Linux	428

Raspberry Pi 1

Vă recomandăm să începeți cu Raspberry Pi Model B, care include conectarea la Ethernet și destule porturi USB pentru un mouse și o tastatură. Astfel, este mult mai ușor pentru început.

Figura 1-1. Conexiuni periferice Raspberry Pi

Dacă nu cumpărați Raspberry Pi ca parte a unui kit, probabil că nu va avea o carcasă, dar puteți pune placa ca atare pentru impresia de expert în calculatoare.

Sau, dacă aveți acces la o imprimantă 3D, CNC sau la un cutter cu laser, puteți face singur o carcasă, alegând din numeroasele exemple de pe http://www.thingiverse.com.

Un card de memorie 4 GB SD este suficient de mare pentru sistemul de operare. Un card de dimensiuni mai mari poate fi mai puțin predispus la uzură în timp (mai mult spațiu de stocare de alocat pentru prelungirea memoriei), așa că, dacă aveți un card de 8 GB sau mai mare, este chiar mai bine. Raspberry Pi poate comanda un afișaj complet high-def și poate chiar să trimită sunete prin HDMI. Un televizor HD va putea, aproape sigur, să funcționeze foarte bine ca afișaj pentru Pi.

Dacă aveți la dispoziție o tastatură și un mouse, vă va veni mult mai ușor să începeți. Raspberry Pi Model B are exact două porturi USB, suficiente pentru mouse și tastatură.

Dacă vreți să adăugați un adaptor USB WLAN, aveți nevoie de un terminal USB în funcțiune. Vezi http://elinux.org/RPI_USB_Wi-Fi_ Adapters pentru lista de adaptoare WiFi din Pi-ul dumneavoastră, dând dublu-clic pe icoana WiFi Config de pe Desktop după ce instalați sistemul de operare și bootați la mediul grafic de pe desktop.

Cel mai scump computer (35\$)?

Toate cablurile, tastatura, mouse-ul și afișajul pot costa mai mult decât două Raspberry Pi. Dacă nu aveți deja toate aceste piese pe undeva, pline de praf, atunci este cam mult pentru un computer minuscul. Dar chiar și așa, se economisește timp (și bani!) la instalarea unui mediu de lucru confortabil. Mai târziu, când proiectul ajunge să funcționeze, puteți reduce sistemul la părțile strict necesare. După cum se spune, Raspberry Pi este singurul computer de 35 \$ care costă o sută de dolari.

Dacă decideți să interacționați cu Raspberry Pi prin SSH sau VNC în rețea, nu aveți nevoie decât să conectați rețeaua și electricitatea și nu veți mai avea nevoie de tastatură, mouse sau monitor decât în timpul instalării inițiale.

Raspberry Pi de la zero la prima bootare

Acest capitol vă va învăța cum să porniți și să rulați rapid Raspberry Pi. Primul lucru pe care trebuie să-l faceți este să instalați programul Linux pe Raspberry Pi. Pentru aceasta, trebuie să urmați următorii pași:

- Descărcați și extrageți setup-ul de instalare pe un card SD formatat.
- Inserați cardul în Raspberry Pi și conectați-l la o tastatură, un mouse și un monitor.
- Porniți-l, alegeți ce trebuie să instalați și așteptați.

După ce se finalizează acești pași, sunteți gata să accesați Pi-ul pe un desktop setat grafic pentru Linux.

Veți avea nevoie de următoarele părți:

- Raspberry Pi Model B
- Cablu micro USB și încărcător USB (sau computer)
- Card SD de 4GB
- Afişaj cu port HDMI
- Cablu HDMI
- Mouse USB
- Tastatură USB

Extrageți NOOBS*

Downloadați NOOBS_vX_Y_Z.zip (începând cu această formulă, numele fișierului până să citiți acest lucru) de pe link-ul http://raspberrypi.org/downloads.

De asemenea, puteți găsi toate link-urile necesare aici http://botbook. com, care se potrivesc cu arhivele fișierelor cu conținut similar.

Inserați cardul SD în calculator. Majoritatea cardurilor SD sunt în format FAT32 din fabricatie, deci veți intâmpina probleme de spațiu pe card numai dacă l-ați formatat singuri cu un alt tip de format de bază. După ce dezarhivați arhiva, asigurați-vă că fisierul bootcode.bin este in directorul de baza al cardului SD.

Dacă aveți nevoie să formatați cardul SD, folosiți metoda prezentată pe (https://www.sdcard.org/downloads/formatter_4/) de către SD Association.

În versiunile moderne ale Linux, Windows sau Mac puteți accesa NOOBS.zip doar dând dublu-clic sau clic-dreapta si dezarhivare. Pentru versiunile vechi ale Windows-ului, puteți instala 7zip (*http://www.7-zip.org*), pentru a dezarhiva arhivele zip.

Conectarea cablurilor

Conectarea cablurilor este ușoară, pentru că fiecare cablu se potrivește doar în orificiul destinat lui. Conectați mouse-ul și tastatura în portul USB al Raspberry Pi. Dacă folosiți un monitor HDMI, conectați un cablu HDMI între monitor și Raspberry Pi. Dacă folosiți un monitor NTSC sau PAL, folosiți un cablu video compozit pentru a conecta fișa galbenă a Raspberry Pi la monitor. În continuare, conectați cablul micro USB la Raspberry pentru a alimenta cu energie. Introduceți cablul fie într-un port USB al computerului, fie la un încărcător USB de 5 volți care asigură cel puțin 700 mA.

Bootarea și instalarea Raspbian

Imediat ce conectați la energie Raspberry Pi, acesta se bootează. Nu este nevoie de niciun întrerupător.

Dacă nu apare nimic pe ecran, poate că va trebui să selectați modul de ieșire adecvat pentru Raspberry Pi. Modul implicit de ieșire este HDMI, dar dacă sunteți conectați prin HDMI și nu vedeți nimic, apăsați 2 pe tastatura conectată la Raspberry Pi-pentru a selecta Modul HDMI de Siguranță. Dacă sunteți conectați prin conectorul compozit (galben), apăsați tasta 3 pentru un monitor sau televizor PAL, sau tasta 4 pentru un monitor sau televizor NTSC.

Veți fi întâmpinat printr-un meniu grafic cu diferite sisteme de operare precum și limba și tipul de tastatură. Selectați "Raspbian [RECOMANDAT]" (Figura 1-2) și selectați limba și tipul de tastatură pe care le veți utiliza.

install OS Edia control (of Soline help (h)	test (Car)
Archlinux		an all the second
OpenELEC		
Pidora	Carlo and	
asc os		

Figura 1-2. Alegerea unui sistem de operare

Dacă știți Ebian, Mint sau Ubuntu, vă veți simți în largul dumneavoastră cu alegerea făcută; dacă nu, citiți mai departe și o să vă simțiți la fel de confortabil! Raspbian se instalează în doar câteva minute (Figura 1-3). După încheierea instalării, ea va anunța că a instalat sistemul de operare cu succes. Apăsați Enter sau OK pentru re-bootare.

Figura 1-3. Raspbian se instalează.

Se deschide utilitatea de configurare a Raspberry Pi. Folosiți săgețile și Tab pentru a naviga și apăsați Enter/Return pentru a selecta o opțiune, așa cum se arată în Figura 1-4.

Figura 1-4. Schimbarea parolei.

Va trebui să validați opțiunea Boot pe Desktop. După ce terminați schimbarea setărilor, folosiți Tab pentru a selecta Finish și rebootați atunci când vi se cere.

După ce Raspberry Pi s-a rebootat, va rula pe un desktop deja setat grafic și va porni automat.

Dacă ați ales să nu permiteți bootarea automată pe desktop, veți porni de fiecare data cu interfața de comandă principală. Logați-vă ca "raspberry" folosind parola "pi" (dacă nu ați schimbat-o). După ce vă logați, scrieți startx în bara de start a sistemului Windows.

(Figura 1-5) Bine ați venit pe Linux! Beneficiați de Raspbian pe Raspberry Pi

Pentru a inchide Raspberry Pi, dați dublu-clic pe iconița "Shut down"de pe desktop. După finalizarea procesului de închidere a sistemului, trebuie să deconectați aparatul de la sursa de curent.

Depanarea instalării defectuoase a Raspberry Pi

Iată câteva soluții pentru problemele des întâlnite:

Este cardul SD formatat in FAT32?

Dacă aveți probleme cu bootarea de pe cardul SD, este posibil să nu fie formatat corect.

Pe Linux, folosiți editorul de bază pentru partiționare (scrieți sudo gparted pentru a îl porni).Formatați întregul hard în FAT. Puteți folosi un alt instrument împreună cu comanda sudo pal impsest (sau sudo